organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-*n*-Propylcyclohexyl)phenol

Hui-Xin Zhang,^{a,b} Bao-Hua Tang^c and Xiu-Hong Jin^d*

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, ^b School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, People's Republic of China, ^cBasic Courses Teaching Department, Academy of Armed Police, Langfang 065000, People's Republic of China, and ^dTianjin Research and Design Institute of Chemical Industry, Tianjin 300131, People's Republic of China Correspondence e-mail: jxgs123@yahoo.com.cn

Received 16 September 2007; accepted 19 September 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.058; wR factor = 0.130; data-to-parameter ratio = 14.3.

In the title compound, $C_{15}H_{22}O$, the cyclohexyl ring adopts a chair conformation. The crystal structure is stabilized by a disordered $O-H\cdots O$ hydrogen bond which forms zigzag chains along the *b* axis.

Related literature

For a related structure, see Wang *et al.* (2006); for uses of phenol derivatives, see Eidenschink *et al.* (1978). For related literature, see Hu *et al.* (2003).

Experimental

Crystal data $C_{15}H_{22}O$ $M_r = 218.33$

Monoclinic, C2/ca = 35.062 (5) Å

b = 5.3648 (6) Å	
c = 13.488 (2) Å	
$\beta = 98.994 \ (6)^{\circ}$	
V = 2505.9 (6) Å ³	
Z = 8	

Data collection

Rigaku Saturn CCD diffractometer	8805 measured reflections
Absorption correction: multi-scan	2182 independent reflections
(CrystalClear; Rigaku/MSC,	1824 reflections with $I > 2\sigma(I)$
2005)	$R_{\rm int} = 0.053$
$T_{\min} = 0.986, \ T_{\max} = 0.993$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.130$ S = 1.132182 reflections 153 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

 $0.20 \times 0.14 \times 0.10$ mm

T = 113 (2) K

Table 1	
Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1B \cdots O1^{i} \\ O1 - H1A \cdots O1^{ii} \end{array}$	0.821 (10) 0.817 (10)	2.060 (14) 2.083 (12)	2.867 (3) 2.893 (3)	168 (4) 171 (4)
Symmetry codes: (i) -	$-x + \frac{1}{2}, -y + \frac{1}{2}, -$	$z + 1$; (ii) $-x + \frac{1}{2}$,	$-y - \frac{1}{2}, -z + 1.$	

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2360).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Eidenschink, R., Krause, J. & Pohl, L. (1978). US Patent No. 4 130 502.
- Hu, B. H., Xia, Y. T., Zhou, Y. B., Meng, F. M., Chen, X. & Fu, W. G. (2003). Chinese Patent No. 1 463 961.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, H.-F., Guo, Y., Zhang, H., Zeng, T. & Li, H.-B. (2006). Acta Cryst. E62, 03721–03722.

supplementary materials

Acta Cryst. (2007). E63, o4520 [doi:10.1107/S1600536807046120]

4-(4-n-Propylcyclohexyl)phenol

H.-X. Zhang, B.-H. Tang and X.-H. Jin

Comment

Phenol derivatives are widely used as starting materials for many products, including drugs and liquid crystalline materials (Eidenschink *et al.*, 1978) and the crystal structure of 4-(4-n-propylcyclohexyl)phenol is reported herein, Fig. 1. The cyclohexyl ring adopts a chair conformation and the molecules were linked into dimers by O—H…O hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the procedure of Hu *et al.* (2003). Suitable crystals of (I) were obtained by slow evaporation of a methanol solution.

Refinement

To avoid an unreasonable intermolecular H···H contact, the H atom of the OH group must be disordered over two positions with equal occupancy so as to form alternative O—H···O bonds to adjacent OH groups. The H atoms of the disordered O—H groups were refined freely with fixed isotropic displacement parameters, $U_{iso} = 1.5U_{eq}$ (O). Other H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic 1.00 Å, $U_{iso}=1.2U_{eq}$ (C) for CH, 0.99 Å, $U_{iso}=1.2U_{eq}$ (C) for CH₂ and 0.98 Å, $U_{iso}=1.5U_{eq}$ (C) for CH₃ atoms.

Figures

Fig. 1. A view of the molecule of (I), shown with 30% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Only one of the disordered H atoms attached to O1 is shown.

4-(4-n-propylcyclohexyl)phenol

Crystal data	
C ₁₅ H ₂₂ O	$F_{000} = 960$
$M_r = 218.33$	$D_{\rm x} = 1.157 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
Hall symbol: -C 2yc	Cell parameters from 1756 reflections
a = 35.062 (5) Å	$\theta = 3.1 - 25.0^{\circ}$
<i>b</i> = 5.3648 (6) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 13.488 (2) Å	T = 113 (2) K
$\beta = 98.994 \ (6)^{\circ}$	Prism, colorless
V = 2505.9 (6) Å ³	$0.20\times0.14\times0.10~mm$

Z = 8

Data collection

Rigaku Saturn CCD diffractometer	2182 independent reflections
Radiation source: Rotating anode	1824 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.053$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 113(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -41 \rightarrow 41$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -6 \rightarrow 6$
$T_{\min} = 0.986, T_{\max} = 0.993$	$l = -15 \rightarrow 16$
8805 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 1.3717P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
2182 reflections	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
153 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropi	c or e	eauivalent	isotroi	pic dis	placement	parameters ((A^2))
1		000.000000000		1001. op 1			1001.01		proceencer		/	·

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.24200 (4)	0.0013 (2)	0.52977 (10)	0.0218 (4)	

H1A	0.2474 (13)	-0.144 (3)	0.519 (3)	0.033*	0.50
H1B	0.2432 (13)	0.143 (4)	0.508 (3)	0.033*	0.50
C1	0.21933 (5)	0.0111 (3)	0.60602 (13)	0.0159 (4)	
C2	0.19413 (5)	0.2098 (3)	0.60899 (13)	0.0176 (4)	
H2	0.1922	0.3367	0.5593	0.021*	
C3	0.17169 (5)	0.2212 (3)	0.68538 (13)	0.0167 (4)	
H3	0.1546	0.3580	0.6875	0.020*	
C4	0.17364 (5)	0.0360 (3)	0.75906 (13)	0.0162 (4)	
C5	0.19938 (5)	-0.1608 (3)	0.75345 (13)	0.0168 (4)	
Н5	0.2013	-0.2891	0.8025	0.020*	
C6	0.22232 (5)	-0.1743 (3)	0.67816 (13)	0.0175 (4)	
H6	0.2398	-0.3090	0.6763	0.021*	
C7	0.14826 (5)	0.0456 (3)	0.84070 (13)	0.0164 (4)	
H7	0.1574	-0.0876	0.8907	0.020*	
C8	0.15084 (5)	0.2951 (4)	0.89706 (14)	0.0192 (4)	
H8A	0.1780	0.3258	0.9274	0.023*	
H8B	0.1428	0.4312	0.8487	0.023*	
C9	0.12539 (5)	0.2995 (4)	0.97970 (13)	0.0183 (4)	
H9A	0.1271	0.4661	1.0116	0.022*	
H9B	0.1352	0.1755	1.0319	0.022*	
C10	0.08291 (5)	0.2411 (3)	0.93881 (14)	0.0171 (4)	
H10	0.0729	0.3761	0.8906	0.021*	
C11	0.08033 (5)	-0.0057 (4)	0.88091 (14)	0.0216 (5)	
H11A	0.0883	-0.1434	0.9285	0.026*	
H11B	0.0531	-0.0351	0.8504	0.026*	
C12	0.10566 (5)	-0.0096 (4)	0.79842 (14)	0.0191 (4)	
H12A	0.0961	0.1165	0.7469	0.023*	
H12B	0.1038	-0.1753	0.7657	0.023*	
C13	0.05754 (5)	0.2345 (4)	1.02191 (14)	0.0202 (5)	
H13A	0.0310	0.1859	0.9916	0.024*	
H13B	0.0676	0.1035	1.0709	0.024*	
C14	0.05541 (6)	0.4796 (4)	1.07852 (15)	0.0245 (5)	
H14A	0.0816	0.5235	1.1129	0.029*	
H14B	0.0468	0.6135	1.0296	0.029*	
C15	0.02804 (6)	0.4687 (4)	1.15591 (15)	0.0279 (5)	
H15A	0.0279	0.6304	1.1897	0.042*	
H15B	0.0367	0.3392	1.2056	0.042*	
H15C	0.0019	0.4294	1.1222	0.042*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1	0.0242 (7)	0.0202 (8)	0.0233 (8)	0.0003 (7)	0.0111 (6)	-0.0012 (7)
C1	0.0154 (9)	0.0173 (11)	0.0155 (9)	-0.0038 (7)	0.0040 (7)	-0.0047 (8)
C2	0.0186 (9)	0.0172 (11)	0.0168 (10)	-0.0011 (8)	0.0021 (8)	0.0012 (8)
C3	0.0176 (9)	0.0129 (10)	0.0194 (10)	0.0013 (7)	0.0025 (8)	-0.0019 (8)
C4	0.0156 (9)	0.0167 (11)	0.0157 (9)	-0.0041 (7)	0.0010 (7)	-0.0025 (8)
C5	0.0197 (9)	0.0145 (10)	0.0159 (9)	-0.0009 (8)	0.0014 (8)	0.0011 (8)

supplementary materials

C6	0.0164 (9)	0.0142 (10)	0.0219 (10)	0.0018 (7)	0.0032 (8)	-0.0002 (8)
C7	0.0193 (9)	0.0156 (10)	0.0146 (9)	0.0011 (8)	0.0035 (7)	0.0001 (8)
C8	0.0169 (9)	0.0200 (11)	0.0213 (10)	-0.0022 (8)	0.0044 (8)	-0.0030 (8)
C9	0.0168 (9)	0.0213 (11)	0.0169 (10)	-0.0003 (8)	0.0033 (7)	-0.0035 (8)
C10	0.0166 (9)	0.0179 (11)	0.0174 (10)	-0.0003 (8)	0.0043 (8)	0.0004 (8)
C11	0.0195 (9)	0.0232 (12)	0.0229 (10)	-0.0063 (8)	0.0061 (8)	-0.0036 (9)
C12	0.0189 (10)	0.0175 (11)	0.0212 (10)	-0.0029 (8)	0.0038 (8)	-0.0040 (8)
C13	0.0188 (10)	0.0225 (11)	0.0198 (10)	-0.0019 (8)	0.0046 (8)	0.0013 (9)
C14	0.0235 (10)	0.0279 (12)	0.0232 (10)	-0.0017 (9)	0.0074 (8)	-0.0030 (9)
C15	0.0240 (11)	0.0379 (14)	0.0231 (11)	0.0047 (9)	0.0077 (9)	-0.0009 (10)

Geometric parameters (Å, °)

01—C1	1.396 (2)	C9—C10	1.537 (2)
O1—H1A	0.817 (10)	С9—Н9А	0.9900
O1—H1B	0.821 (10)	С9—Н9В	0.9900
C1—C6	1.384 (2)	C10—C11	1.533 (2)
C1—C2	1.389 (2)	C10—C13	1.536 (2)
C2—C3	1.392 (2)	C10—H10	1.0000
С2—Н2	0.9500	C11—C12	1.528 (2)
C3—C4	1.399 (2)	C11—H11A	0.9900
С3—Н3	0.9500	C11—H11B	0.9900
C4—C5	1.399 (2)	C12—H12A	0.9900
C4—C7	1.521 (2)	C12—H12B	0.9900
C5—C6	1.393 (2)	C13—C14	1.528 (3)
С5—Н5	0.9500	С13—Н13А	0.9900
С6—Н6	0.9500	С13—Н13В	0.9900
С7—С8	1.535 (2)	C14—C15	1.526 (2)
C7—C12	1.542 (2)	C14—H14A	0.9900
С7—Н7	1.0000	C14—H14B	0.9900
C8—C9	1.533 (2)	C15—H15A	0.9800
C8—H8A	0.9900	С15—Н15В	0.9800
C8—H8B	0.9900	C15—H15C	0.9800
C1—O1—H1A	110 (3)	Н9А—С9—Н9В	107.9
C1—O1—H1B	107 (3)	C11—C10—C13	110.92 (15)
H1A—O1—H1B	143 (5)	C11—C10—C9	109.61 (15)
C6—C1—C2	120.65 (16)	C13—C10—C9	112.45 (15)
C6—C1—O1	120.11 (16)	C11—C10—H10	107.9
C2-C1-O1	119.23 (16)	С13—С10—Н10	107.9
C1—C2—C3	119.38 (17)	С9—С10—Н10	107.9
C1—C2—H2	120.3	C12-C11-C10	112.82 (15)
С3—С2—Н2	120.3	C12—C11—H11A	109.0
C2—C3—C4	121.60 (17)	C10-C11-H11A	109.0
С2—С3—Н3	119.2	C12—C11—H11B	109.0
С4—С3—Н3	119.2	C10-C11-H11B	109.0
C5—C4—C3	117.25 (16)	H11A—C11—H11B	107.8
C5—C4—C7	121.34 (16)	C11—C12—C7	111.58 (15)
C3—C4—C7	121.39 (16)	C11—C12—H12A	109.3
C6—C5—C4	122.00 (17)	C7—C12—H12A	109.3

С6—С5—Н5	119.0	C11—C12—H12B	109.3
С4—С5—Н5	119.0	C7—C12—H12B	109.3
C1—C6—C5	119.11 (17)	H12A—C12—H12B	108.0
С1—С6—Н6	120.4	C14—C13—C10	115.06 (15)
С5—С6—Н6	120.4	C14—C13—H13A	108.5
C4—C7—C8	113.09 (15)	C10-C13-H13A	108.5
C4—C7—C12	111.62 (14)	C14—C13—H13B	108.5
C8—C7—C12	109.21 (14)	C10-C13-H13B	108.5
С4—С7—Н7	107.6	H13A—C13—H13B	107.5
С8—С7—Н7	107.6	C15—C14—C13	113.18 (16)
С12—С7—Н7	107.6	C15—C14—H14A	108.9
C9—C8—C7	112.19 (15)	C13—C14—H14A	108.9
С9—С8—Н8А	109.2	C15—C14—H14B	108.9
С7—С8—Н8А	109.2	C13—C14—H14B	108.9
С9—С8—Н8В	109.2	H14A—C14—H14B	107.8
С7—С8—Н8В	109.2	C14—C15—H15A	109.5
H8A—C8—H8B	107.9	C14—C15—H15B	109.5
C8—C9—C10	112.17 (15)	H15A—C15—H15B	109.5
С8—С9—Н9А	109.2	C14—C15—H15C	109.5
С10—С9—Н9А	109.2	H15A—C15—H15C	109.5
С8—С9—Н9В	109.2	H15B—C15—H15C	109.5
С10—С9—Н9В	109.2		
C6—C1—C2—C3	-0.1 (3)	C4—C7—C8—C9	-179.37 (14)
O1—C1—C2—C3	-179.52 (16)	C12—C7—C8—C9	55.69 (19)
C1—C2—C3—C4	-0.5 (3)	C7—C8—C9—C10	-56.2 (2)
C2—C3—C4—C5	0.6 (3)	C8—C9—C10—C11	53.8 (2)
C2—C3—C4—C7	-178.30 (16)	C8—C9—C10—C13	177.63 (15)
C3—C4—C5—C6	0.0 (3)	C13-C10-C11-C12	-179.05 (15)
C7—C4—C5—C6	178.89 (16)	C9—C10—C11—C12	-54.3 (2)
C2-C1-C6-C5	0.7 (3)	C10-C11-C12-C7	56.5 (2)
01—C1—C6—C5	-179.91 (16)	C4—C7—C12—C11	178.71 (15)
C4—C5—C6—C1	-0.7 (3)	C8—C7—C12—C11	-55.5 (2)
C5—C4—C7—C8	128.81 (18)	C11-C10-C13-C14	-175.11 (16)
C3—C4—C7—C8	-52.4 (2)	C9-C10-C13-C14	61.8 (2)
C5—C4—C7—C12	-107.56 (19)	C10-C13-C14-C15	176.55 (16)
C3—C4—C7—C12	71.2 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
O1—H1B···O1 ⁱ	0.821 (10)	2.060 (14)	2.867 (3)	168 (4)
O1—H1A···O1 ⁱⁱ	0.817 (10)	2.083 (12)	2.893 (3)	171 (4)
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z+1$; (ii) $-x+1/2$	2, -y-1/2, -z+1.			

Fig. 1

